p.adjust 没有混淆 BY。参考论文中的定理 1.3(第 1182 页第 5 节中的证明):
Benjamini, Y. 和 Yekutieli, D. (2001)。依赖关系下多次测试中错误发现率的控制。统计年鉴 29, 1165–1188。
由于本文讨论了几种不同的调整,p.adjust() 帮助页面上的参考(在撰写本文时)有些模糊。该方法保证在最一般的依赖结构下以规定的速率控制 FDR。Christopher Genovese 的幻灯片中有丰富的评论,网址为:www.stat.cmu.edu/~genovese/talks/hannover1-04.pdf 请注意幻灯片 37 上的评论,参考 BY 2001 论文中定理 1.3 的方法 [method= 'BY' 与 p.adjust()] 表示:“不幸的是,这通常非常保守,有时甚至比 Bonferroni 还要保守。”
数值示例: method='BY' vsmethod='BH'
下面使用 R 的 p.adjust() 函数对 Benjamini 和 Hochberg (2000) 论文中表 2 第 2 列的 p 值比较 method='BY' 和 method='BH':
> p <-    c(0.85628,0.60282,0.44008,0.41998,0.3864,0.3689,0.31162,0.23522,0.20964,
0.19388,0.15872,0.14374,0.10026,0.08226,0.07912,0.0659,0.05802,0.05572,
0.0549,0.04678,0.0465,0.04104,0.02036,0.00964,0.00904,0.00748,0.00404,
0.00282,0.002,0.0018,2e-05,2e-05,2e-05,0)
> pmat <- rbind(p,p.adjust(p, method='BH'),p.adjust(p, method='BY'))
> rownames(pmat)<-c("pval","adj='BH","adj='BY'")
> round(pmat,4)
           [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]
pval     0.8563 0.6028 0.4401 0.4200 0.3864 0.3689 0.3116 0.2352 0.2096
adj='BH  0.8563 0.6211 0.4676 0.4606 0.4379 0.4325 0.3784 0.2962 0.2741
adj='BY' 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
          [,10]  [,11]  [,12]  [,13]  [,14]  [,15]  [,16]  [,17]  [,18]
pval     0.1939 0.1587 0.1437 0.1003 0.0823 0.0791 0.0659 0.0580 0.0557
adj='BH  0.2637 0.2249 0.2125 0.1549 0.1332 0.1332 0.1179 0.1096 0.1096
adj='BY' 1.0000 0.9260 0.8751 0.6381 0.5485 0.5485 0.4856 0.4513 0.4513
          [,19]  [,20]  [,21]  [,22]  [,23]  [,24]  [,25]  [,26]  [,27]
pval     0.0549 0.0468 0.0465 0.0410 0.0204 0.0096 0.0090 0.0075 0.0040
adj='BH  0.1096 0.1060 0.1060 0.1060 0.0577 0.0298 0.0298 0.0283 0.0172
adj='BY' 0.4513 0.4367 0.4367 0.4367 0.2376 0.1227 0.1227 0.1164 0.0707
          [,28]  [,29]  [,30] [,31] [,32] [,33] [,34]
pval     0.0028 0.0020 0.0018 0e+00 0e+00 0e+00     0
adj='BH  0.0137 0.0113 0.0113 2e-04 2e-04 2e-04     0
adj='BY' 0.0564 0.0467 0.0467 7e-04 7e-04 7e-04     0
注意:将 BY 值与 BH 值相关联的乘数是∑mi=1(1/i), 在哪里m是 p 值的数量。例如,乘数是 m = 30、34、226、1674、12365 的值:
> mult <- sapply(c(11, 30, 34, 226, 1674, 12365), function(i)sum(1/(1:i)))
setNames(mult, paste(c('m =',rep('',5)), c(11, 30, 34, 226, 1674, 12365)))
  
   m = 11     30     34    226   1674  12365 
    3.020  3.995  4.118  6.000  8.000 10.000
  
检查上面的示例,其中m=34,乘数为 4.118