好吧,你没有提供很多信息,所以我将在这里做一些假设,但我认为这非常接近你想要的。请记住,Beta = (Covar/Var),因此您需要使用下面给出的内容进行计算,然后您将拥有所需的一切。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.optimize as sco
import datetime as dt
import math
from datetime import datetime, timedelta
from pandas_datareader import data as wb
from sklearn.cluster import KMeans
np.random.seed(777)
start = '2019-02-28'
end = '2020-02-28'
# N = 90
# start = datetime.now() - timedelta(days=N)
# end = dt.datetime.today()
tickers = ['MMM',
'ABT',
'ABBV',
'ABMD',
'ACN',
'ATVI',
'ADBE',
'AMD',
'AAP',
'AES',
'AMG',
'XEL',
'XRX',
'XLNX',
'XYL',
'YUM',
'ZBH',
'ZION',
'ZTS']
thelen = len(tickers)
price_data = []
for ticker in tickers:
prices = wb.DataReader(ticker, start = start, end = end, data_source='yahoo')[['Adj Close']]
price_data.append(prices.assign(ticker=ticker)[['ticker', 'Adj Close']])
df = pd.concat(price_data)
df.dtypes
df.head()
df.shape
pd.set_option('display.max_columns', 500)
df = df.reset_index()
df = df.set_index('Date')
table = df.pivot(columns='ticker')
# By specifying col[1] in below list comprehension
# You can select the stock names under multi-level column
table.columns = [col[1] for col in table.columns]
table.head()
###################################################
def portfolio_annualised_performance(weights, mean_returns, cov_matrix):
returns = np.sum(mean_returns*weights ) *252
std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) * np.sqrt(252)
return std, returns
def random_portfolios(num_portfolios, mean_returns, cov_matrix, risk_free_rate):
results = np.zeros((3,num_portfolios))
weights_record = []
for i in range(num_portfolios):
weights = np.random.random(thelen)
weights /= np.sum(weights)
weights_record.append(weights)
portfolio_std_dev, portfolio_return = portfolio_annualised_performance(weights, mean_returns, cov_matrix)
results[0,i] = portfolio_std_dev
results[1,i] = portfolio_return
results[2,i] = (portfolio_return - risk_free_rate) / portfolio_std_dev
return results, weights_record
returns = table.pct_change()
mean_returns = returns.mean()
cov_matrix = returns.cov()
num_portfolios = 10000
risk_free_rate = 0.0178
###################################################
def display_simulated_ef_with_random(mean_returns, cov_matrix, num_portfolios, risk_free_rate):
results, weights = random_portfolios(num_portfolios,mean_returns, cov_matrix, risk_free_rate)
max_sharpe_idx = np.argmax(results[2])
sdp, rp = results[0,max_sharpe_idx], results[1,max_sharpe_idx]
max_sharpe_allocation = pd.DataFrame(weights[max_sharpe_idx],index=table.columns,columns=['allocation'])
max_sharpe_allocation.allocation = [round(i*100,2)for i in max_sharpe_allocation.allocation]
max_sharpe_allocation = max_sharpe_allocation.T
min_vol_idx = np.argmin(results[0])
sdp_min, rp_min = results[0,min_vol_idx], results[1,min_vol_idx]
min_vol_allocation = pd.DataFrame(weights[min_vol_idx],index=table.columns,columns=['allocation'])
min_vol_allocation.allocation = [round(i*100,2)for i in min_vol_allocation.allocation]
min_vol_allocation = min_vol_allocation.T
print("-")
print("Maximum Sharpe Ratio Portfolio Allocation\n")
print("Annualised Return:", round(rp,2))
print("Annualised Volatility:", round(sdp,2))
print("\n")
print(max_sharpe_allocation)
print("-")
print("Minimum Volatility Portfolio Allocation\n")
print("Annualised Return:", round(rp_min,2))
print("Annualised Volatility:", round(sdp_min,2))
print("\n")
print(min_vol_allocation)
plt.figure(figsize=(10, 7))
plt.scatter(results[0,:],results[1,:],c=results[2,:],cmap='YlGnBu', marker='o', s=10, alpha=0.3)
plt.colorbar()
plt.scatter(sdp,rp,marker='*',color='r',s=500, label='Maximum Sharpe ratio')
plt.scatter(sdp_min,rp_min,marker='*',color='g',s=500, label='Minimum volatility')
plt.title('Simulated Portfolio Optimization based on Efficient Frontier')
plt.xlabel('annualised volatility')
plt.ylabel('annualised returns')
plt.legend(labelspacing=0.8)
display_simulated_ef_with_random(mean_returns, cov_matrix, num_portfolios, risk_free_rate)
结果:
Maximum Sharpe Ratio Portfolio Allocation
Annualised Return: 0.2
Annualised Volatility: 0.16
AAP ABBV ABMD ABT ACN ADBE AES AMD AMG ATVI \
allocation 3.29 5.51 0.59 4.29 2.89 9.09 8.42 11.22 3.01 10.03
MMM XEL XLNX XRX XYL YUM ZBH ZION ZTS
allocation 0.12 11.39 2.95 6.7 2.89 5.91 3.02 0.79 7.88
-
Minimum Volatility Portfolio Allocation
Annualised Return: 0.05
Annualised Volatility: 0.13
AAP ABBV ABMD ABT ACN ADBE AES AMD AMG ATVI MMM \
allocation 6.35 8.14 2.55 4.32 8.71 2.18 5.62 1.99 2.08 4.86 6.89
XEL XLNX XRX XYL YUM ZBH ZION ZTS
allocation 10.1 1.93 1.9 5.5 7.92 5.57 6.01 7.39
