我正在使用内核回归来构建预测模型。同样,我正在使用np包。它工作正常,但我在多次运行相同的数据时观察到,它会产生不同的结果。为什么它会在相同数据上产生不同的输出?有没有办法选择模型的最佳运行?这是最小的R代码:
library(np)
bw.all = npregbw(formula=power ~ temperature
+ prevday1 + prevday2
+ prev_instant1 + prev_instant2
+ prev_2_hour,
regtype="ll",bwmethod="cv.aic", data=new_tr_dat)
model.np <- npreg(bws=bw.all)
summary(model.np)
我正在使用以下数据进行实验:
power temperature prevday1 prevday2 prev_instant1 prev_instant2 prev_2_hour
1 220.59680 38 NA NA 648.3621 1392.2186 848.7299
2 584.06867 38 220.59680 NA 1012.6853 250.1150 434.7129
3 206.39849 40 584.06867 220.59680 169.9380 105.5796 127.7294
4 177.05559 39 206.39849 584.06867 167.6312 229.3927 249.9871
5 165.71996 41 177.05559 206.39849 214.8291 248.5378 247.0262
6 184.02724 44 165.71996 177.05559 256.9970 314.3742 485.5184
7 187.70557 43 184.02724 165.71996 125.6160 213.9993 174.0830
8 916.78484 43 187.70557 184.02724 668.2840 217.3451 423.8285
9 185.98017 42 916.78484 187.70557 295.7329 331.6580 1227.0293
10 490.42294 42 185.98017 916.78484 241.6590 249.0523 255.3110
11 703.92694 39 490.42294 185.98017 806.5259 1515.1619 1140.4415
12 2038.91747 37 703.92694 490.42294 232.5541 582.5105 632.7118
13 208.66049 26 2038.91747 703.92694 210.5353 217.5053 221.3938
14 281.89860 37 208.66049 2038.91747 796.4336 256.4664 603.0781
15 425.72868 32 281.89860 208.66049 250.6069 187.1751 260.0573
16 86.77193 36 425.72868 281.89860 174.1249 179.6437 164.4359
17 218.06322 39 86.77193 425.72868 223.6548 316.2230 322.8536
18 258.89159 43 218.06322 86.77193 233.4561 372.5123 256.8588
19 1436.19980 40 258.89159 218.06322 1266.2630 1387.2287 791.7056
20 261.68520 42 1436.19980 258.89159 278.3378 230.5614 262.0084
21 225.34517 44 261.68520 1436.19980 211.3332 147.6705 196.8328
22 852.68835 44 225.34517 261.68520 1271.5826 1233.7158 991.7835
23 1729.79826 44 852.68835 225.34517 945.6528 298.0929 412.2199
24 464.58053 43 1729.79826 852.68835 182.6507 184.3031 203.5395
25 902.30950 45 464.58053 1729.79826 308.1398 1743.3495 642.4563
26 428.18792 45 902.30950 464.58053 205.1806 697.9208 1434.5425
27 1508.74739 43 428.18792 902.30950 1371.0550 2165.7173 1918.5236
28 355.01704 42 1508.74739 428.18792 1750.3907 1740.4654 1022.5056
29 3248.62618 43 355.01704 1508.74739 686.8528 360.0539 660.6378
30 1949.63937 44 3248.62618 355.01704 258.4627 217.2683 232.3818
31 725.25368 40 1949.63937 3248.62618 1406.3282 1714.6412 1375.2824
32 261.31252 32 725.25368 1949.63937 553.0443 275.6697 409.9598