据我所知,logistic模型和分数响应模型(frm)的区别在于frm为[0,1],而logistic为{0, 1}的因变量(Y)。此外,frm 使用准似然估计器来确定其参数。
通常,我们可以通过glm来获取逻辑模型glm(y ~ x1+x2, data = dat, family = binomial(logit))。
对于 frm,我们更改family = binomial(logit)为family = quasibinomial(logit)。
我注意到我们也可以family = binomial(logit)用来获取 frm 的参数,因为它给出了相同的估计值。请参阅以下示例
    library(foreign)
    mydata <- read.dta("k401.dta")
    glm.bin <- glm(prate ~ mrate + age + sole + totemp, 
                   data = mydata, family = binomial('logit'))
    summary(glm.bin)
返回:
    Call:
    glm(formula = prate ~ mrate + age + sole + totemp, 
        family = binomial("logit"), 
        data = mydata)
    
    Deviance Residuals: 
        Min       1Q   Median       3Q      Max  
    -3.1214  -0.1979   0.2059   0.4486   0.9146  
    
    Coefficients:
                  Estimate Std. Error z value Pr(>|z|)    
    (Intercept)  1.074e+00  8.869e-02  12.110  < 2e-16 ***
    mrate        5.734e-01  9.011e-02   6.364 1.97e-10 ***
    age          3.089e-02  5.832e-03   5.297 1.17e-07 ***
    sole         3.636e-01  9.491e-02   3.831 0.000128 ***
    totemp      -5.780e-06  2.207e-06  -2.619 0.008814 ** 
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    
    (Dispersion parameter for binomial family taken to be 1)
    
        Null deviance: 1166.6  on 4733  degrees of freedom
    Residual deviance: 1023.7  on 4729  degrees of freedom
    AIC: 1997.6
    
    Number of Fisher Scoring iterations: 6 
对于family = quasibinomial('logit'):
    glm.quasi <- glm(prate ~ mrate + age + sole + totemp, 
     data = mydata
    ,family = quasibinomial('logit'))
    summary(glm.quasi)
返回:
    Call:
    glm(formula = prate ~ mrate + age + sole + totemp, 
        family = quasibinomial("logit"), 
        data = mydata)
    
    Deviance Residuals: 
        Min       1Q   Median       3Q      Max  
    -3.1214  -0.1979   0.2059   0.4486   0.9146  
    
    Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
    (Intercept)  1.074e+00  4.788e-02  22.435  < 2e-16 ***
    mrate        5.734e-01  4.864e-02  11.789  < 2e-16 ***
    age          3.089e-02  3.148e-03   9.814  < 2e-16 ***
    sole         3.636e-01  5.123e-02   7.097 1.46e-12 ***
    totemp      -5.780e-06  1.191e-06  -4.852 1.26e-06 ***
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    
    (Dispersion parameter for quasibinomial family taken to be 0.2913876)
    
        Null deviance: 1166.6  on 4733  degrees of freedom
    Residual deviance: 1023.7  on 4729  degrees of freedom
    AIC: NA
    
    Number of Fisher Scoring iterations: 6
两者的估计 Betafamily值相同,但不同的是 SE 值。但是,要获得正确的 SE,我们必须使用library(sandwich)as in this post。
现在,我的问题:
- 这两个代码有什么区别?
 - frm 即将获得稳健的 SE 吗?
 
如果我的理解不正确,请提出一些建议。