向量和索引符号等价

计算科学 向量 张量
2021-12-05 19:13:03

给定 2 个向量以下是等价的:uv

  • uv
  • uTv
  • uivi
  • viui
  • vu
  • vTu

给定二阶张量(矩阵)和向量,以下是否也等价?Ab

  • Ab
  • Ab
  • Aijbj
  • bjAij
  • bA
  • bTAT

我知道最后一个(可能是倒数第二个)给出了行向量而不是列向量。是否可以在索引符号中判断一个向量是行向量还是列向量,还是应该根据上下文明确?

2个回答

是否可以在索引符号中判断一个向量是行向量还是列向量,还是应该根据上下文明确?

似乎答案实际上潜伏在您的问题本身中:如果那么这并没有留下太多的回旋余地。必须是行向量才能使结果乘积成为标量 - 众所周知,两个向量的点积是标量。另一种情况会给你一个 x系统。uvuTvuTnn

将此逻辑扩展到以下情况vTu我们看到两者vu确实是列向量 - 这是我观察到的关于文学中的向量表示通常是正确的。

现在进入问题的第二部分,正如沃尔夫冈已经提到的那样,矩阵和向量之间的点表示法不是标准表示法。但是,如果您必须使用它,我认为您将必须遵循指示符号的准则,其中点积本质上是指收缩,即AbAijbj. 这又是一个列向量(比如说X)。所以你的第二个列表中有一些等价物,是的。

对于最后一种情况,如果你考虑(Ab)T=XT,并将标准标识应用于您获得的 LHSbTAT=XT. 所以真的,当你不遗余力地对整个系统进行转置时,你会得到一个行向量,如果你想一想,这非常直观。严格来说,你的向量仍然是列向量,只是你选择了他们的转置。

总之:

  1. 非标准符号,但等于Aijbj
  2. 相当于 (1) 按照惯例
  3. 相当于 (1)
  4. 相当于此时的(3),Aijbj只是标量,它们的顺序是可以互换的。另外,请注意i这里是一个虚拟索引。
  5. 我不确定这会产生什么,但我最好的猜测是biAij这不等同于上述内容。
  6. 将解决方案转置为 (1-4)

希望这可以帮助!

不。

  1. @WolfgangBangerth 指出的非标准符号
  2. 列向量
  3. 与 2 相同
  4. 与 3 相同
  5. 非标准符号
  6. 行向量