一维方形井的 Numerov 方法的实现

计算科学 C++ 量子力学
2021-11-29 08:58:47

我想通过 Numerov 方法解决薛定谔,但我遇到了一些麻烦。我正在用 C++ 编程,所以这是我的代码:

#include<cstdlib>
#include<iostream>
#include<cmath>

using namespace std;

double x_min=-4.0 , x_max=4.0;
int N=2000;             
double r=(x_max-x_min)/(1.0*N); 
double d=2.0;
double p=0.4829;    // 2m/(hbar^2)
double Vo=20.0; // Altura del pozo

double x_m=0.1;                                     //Matching point
int i_x_m=(x_m-x_min)/r;

double Control=-123456789;

double SlopeLeft,SlopeRight;

double PAR;

double K2(double x, double E);
double NumerovL(int i, double k21, double k22, double k23, double Y[]);
double NumerovR(int i, double k21, double k22, double k23, double Y[]);
double FuncLeft(double E, double Y[]);
double FuncRight(double E, double Y[]);
void PrintFunc(double Y[]);
void Normalizar(double Y[]);
double f(double E, double Y[]);
double Biseccion(double a, double b, double Y[]);

//=========================MAIN===============================

int main(int argc, char **argv)
{  

double Y[N+1];       // Función de Onda

double paso=0.02;   // Escala   en la que se varia la energía
double Eo=0;

for(double E=0 ; E<=Vo ; E+=paso) //Cálculo de las funciones IMPARES
{
    PAR=-1;
    Eo=Biseccion(E,E+paso,Y);

    if(Eo != Control && SlopeRight*SlopeLeft<0.) 
    {
        Y[i_x_m]=FuncRight(Eo,Y);
        Y[i_x_m]=FuncLeft(Eo,Y);


        Normalizar(Y);

        PrintFunc(Y);   
    }

}


for(double E=0 ; E<=Vo ; E+=paso)   //Cálculo de las funciones PARES
{
    PAR=1;
    Eo=Biseccion(E,E+paso,Y);

    if(Eo != Control && SlopeRight*SlopeLeft>0.)
    {
        Y[i_x_m]=FuncRight(Eo,Y);
        Y[i_x_m]=FuncLeft(Eo,Y);

        Normalizar(Y);

        PrintFunc(Y);   
    }
}


  return 0;
}

 //=========================FUNCIONES===============================

 double K2(double x, double E) 
 {
  double k2;

if(fabs(x)<=d)
{
    k2=p*E;
    return k2;
}
else
{
    k2=p*(E-Vo);
    return k2;
}
}

double NumerovL(int i, double k21, double k22, double k23, double Y[]) 
{ // Para la función de Onda Izquierda
double A1,B1,C1,N;
A1=2.0*(1.0-(5.0/12.0)*r*r*k21)*Y[i-1];
B1=(1.0+(1.0/12.0)*r*r*k22)*Y[i-2];
C1=1.0+(1.0/12.0)*r*r*k23;
N=(A1-B1)/(C1);
return N;
}

double NumerovR(int i, double k21, double k22, double k23, double Y[]) 
{ // Para la función de Onda Derecha
double A1,B1,C1,N;
A1=2.0*(1.0-(5.0/12.0)*r*r*k21)*Y[i+1];
B1=(1.0+(1.0/12.0)*r*r*k22)*Y[i+2];
C1=1.0+(1.0/12.0)*r*r*k23;
N=PAR*(A1-B1)/(C1);
return N;
}

double FuncLeft(double E, double Y[])
{
double k21,k22,k23,Yleft,b;

b=sqrt(p*(Vo-E));

Y[0]=exp(b*x_min);
Y[1]=exp(b*(x_min+r));


for(int i=2 ; i<i_x_m ; i++) // Se calcula la función de Onda Izquierda
{
    k21=K2(x_min+(i-1)*r,E);
    k22=K2(x_min+(i-2)*r,E);
    k23=K2(x_min+i*r,E);

    Y[i]=NumerovL(i,k21,k22,k23,Y);

    if(i==i_x_m-1) //Función de Onda Izquierda en el Matching point
    {
        k21=K2(x_min+(i)*r,E);
        k22=K2(x_min+(i-1)*r,E);
        k23=K2(x_min+(i+1)*r,E);

        Yleft=NumerovL(i+1,k21,k22,k23,Y);
    }
}

SlopeLeft=(Yleft-Y[i_x_m-1])/r;

return Yleft;
}

double FuncRight(double E, double Y[])
{
double k21,k22,k23,Yright,b;

b=sqrt(p*(Vo-E));

Y[N]=PAR*exp(-b*(x_min+N*r));   
Y[N-1]=PAR*exp(-b*(x_min+(N-1)*r));

for(int i=N-2 ; i>i_x_m; i--) // Se calcula la función de Onda Derecha
{
    k21=K2(x_min+(i+1)*r,E);
    k22=K2(x_min+(i+2)*r,E);
    k23=K2(x_min+i*r,E);

    Y[i]=PAR*NumerovR(i,k21,k22,k23,Y);

    if(i==i_x_m+1) //Función de Onda Derecha en el Matching point
    {
        k21=K2(x_min+(i)*r,E);
        k22=K2(x_min+(i+1)*r,E);
        k23=K2(x_min+(i-1)*r,E);

        Yright=NumerovR(i-1,k21,k22,k23,Y);
    }
}

SlopeRight=PAR*(Y[i_x_m+1]-Yright)/r;

return Yright;
}

void PrintFunc(double Y[])
{
  for(int i=0 ; i<=N+1 ; i++)
 {
    cout << x_min+i*r << "\t" << Y[i] << endl;
 }
}

void Normalizar(double Y[])
{
  double S=0;

 for(int i=0 ; i<=N+1 ; i++)
 {
     S += Y[i]*Y[i]*r;
 }  

S=sqrt(S);

  for (int i=0 ; i<=N+1 ; i++)
 {
     Y[i]=Y[i]/S;
 }

}

double f(double E, double Y[])
{
double F;

F=FuncLeft(E,Y)-PAR*FuncRight(E,Y);

return F;
}

 double Biseccion(double a, double b, double Y[])
 {

  double Tol=0.00001; //Tolerancia para encontrar la raiz

 double RET=-123456789;

 if(f(a,Y)*f(b,Y)<0)
 {
     while(fabs(a-b)>Tol)
    {
         double x_m,fa,fm;

        fa=f(a,Y);
        x_m=(a+b)/2.0;
        fm=f(x_m,Y);
        //fb=f(b);

        if(fa*fm<0)
        {
            b=x_m;
            //RET=b;
        }
        else
        {
            a=x_m;
            //RET=a;
        }
    }
    RET=a;
}   

return RET;
}

基本上代码需要所有的精力,即0<E<Vo并且函数“Biseccion”在能量之间应用 Bisection 算法EE+step. 因此,该函数找到左右(来自Numerov 方法)波函数匹配的特征能量。

代码编译完美,但是当我想绘制奇怪的解决方案时问题就出现了。我得到了两个令人满意的解决方案,但另外两个它的功能是连续的但不是它的导数。这是我获得的情节示例:

程序计算的特征函数

如您所见,有两个图表不能令人满意地解决问题。

如果有人可以帮助我解决这个问题,我将非常感激。

1个回答

我认为@Ondřej-Čertík 已经指出:我认为您正在获得正确的解决方案,但请注意,即使您将一个或两个解决方案相乘以获得一个常数,左右解决方案之间的匹配条件仍然成立,因此您可以自由缩放您的一个函数以与匹配点中的另一个函数完全匹配,这相当于更改下一个边界初始值。然后,如果您最终需要它,您可以正常化。无论如何,我认为这足以获得正确的特征值。