我有一个数据是通过每年(1994-2015)在一个西非国家进行的森林清查获得的。从未管理的天然林中选择 10 个大小相等的地块(每个 1 公顷),然后识别和计数树木和灌木的种类。计算了丰度、香农、辛普森等生物多样性指数。我只选择了在所有 10 个地块中收集数据的 9 年,并且我丢弃了不完整的年份并将“年份”作为因素。
数据结构如下:
str(BIData)
'data.frame': 90 obs. of 9 variables:
$ Year : Factor w/ 9 levels "1994","1995",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Plot : Factor w/ 10 levels "Bas Kolel","Bougou",..: 1 2 3 4 5 6 7 8 9 10 ...
$ Richness : int 8 21 13 14 8 10 6 10 8 20 ...
$ Abundance : int 286 1471 1121 466 242 97 250 790 208 2015 ...
$ Shannon : num 1.33 1.79 1.55 1.68 1.44 1.71 1.35 1.27 1.27 1.86 ...
$ Simpson : num 0.656 0.71 0.682 0.694 0.665 0.714 0.66 0.647 0.649 0.718 ...
$ InverseSimpson: num 2.91 3.45 3.14 3.28 2.99 3.52 2.95 2.83 2.86 3.54 ...
$ Topography : Factor w/ 3 levels "Plateau","Slope",..: 3 1 1 3 3 2 2 2 3 1 ...
$ Land_use : Factor w/ 2 levels "Cultivated","Pasture": 1 2 2 2 1 1 2 2 1 2 ...
此外,地块位于不同的地形(坡地、山谷、高原)和土地利用(耕地、牧场)。
我在 lmer 和 lme 中有以下两个模型:
model=lmer(Abundance~Year+Topography+Land_use+(1|Plot), method="ML", data=BIData)
model=lme(Abundance~Year+Topography+Land_use, random=~1|Plot, method="ML", data=BIData)
我得到了完全不同的结果:我的问题?
我不是专家,但我发现它lme提供了一种带有 p 值的“美丽”结果。我可以看到许多重要因素,例如年份、地形和土地利用,而lmer只有 t 值没有 p 值。我不知道哪一个对我的数据是正确的。在这两种情况下,它都显示了良好且可接受的残差图。
请帮助我了解哪一个对我的数据是正确的。
谢谢@fcoppens。不,我没有尝试该参数。这是 和 的lme输出lmer。
lmer
model=lmer(Abundance~Year+Topography+Land_use+(1|Plot), method="ML", data=BIData)
summary(model)
Linear mixed model fit by REML ['lmerMod']
Formula: Abundance ~ Year + Topography + Land_use + (1 | Plot)
Data: BIData
REML criterion at convergence: 1106.2
Scaled residuals:
Min 1Q Median 3Q Max
-2.5754 -0.5024 -0.0186 0.4015 3.4341
Random effects:
Groups Name Variance Std.Dev.
Plot (Intercept) 51753 227.5
Residual 48592 220.4
Number of obs: 90, groups: Plot, 10
Fixed effects:
Estimate Std. Error t value
(Intercept) 1073.15 252.41 4.252
Year1995 0.40 98.58 0.004
Year1996 -32.70 98.58 -0.332
Year1998 -198.10 98.58 -2.010
Year1999 -341.90 98.58 -3.468
Year2002 -295.80 98.58 -3.001
Year2004 -324.90 98.58 -3.296
Year2010 -291.60 98.58 -2.958
Year2015 -371.00 98.58 -3.763
TopographySlope -756.87 206.36 -3.668
TopographyValley -645.82 236.71 -2.728
Land_usePasture 178.07 200.85 0.887
lme
model=lme(Abundance~Year+Topography+Land_use, random=~1|Plot, method="ML", data=BIData)
summary(model)
Linear mixed-effects model fit by maximum likelihood
Data: BIData
AIC BIC logLik
1264.675 1299.673 -618.3377
Random effects:
Formula: ~1 | Plot
(Intercept) Residual
StdDev: 171.5578 209.1232
Fixed effects: Abundance ~ Year + Topography + Land_use
Value Std.Error DF t-value p-value
(Intercept) 1073.1495 213.5506 72 5.025271 0.0000
Year1995 0.4000 100.4595 72 0.003982 0.9968
Year1996 -32.7000 100.4595 72 -0.325504 0.7457
Year1998 -198.1000 100.4595 72 -1.971938 0.0525
Year1999 -341.9000 100.4595 72 -3.403360 0.0011
Year2002 -295.8000 100.4595 72 -2.944469 0.0044
Year2004 -324.9000 100.4595 72 -3.234138 0.0018
Year2010 -291.6000 100.4595 72 -2.902661 0.0049
Year2015 -371.0000 100.4595 72 -3.693029 0.0004
TopographySlope -756.8671 171.7008 6 -4.408058 0.0045
TopographyValley -645.8214 196.9543 6 -3.279041 0.0168
Land_usePasture 178.0654 167.1213 6 1.065486 0.3276
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.6851599 -0.5159528 -0.0222693 0.4401886 3.6493837
Number of Observations: 90
Number of Groups: 10