下面我展示了我为估计 eta 编写的部分代码。在第一个输出中,我使用普通 df,在第二个输出中使用温室 geisser df,在第三个输出中使用 hyndt df。您可以通过 df*ε 获得调整后的 df。根据我所写的,假设一切都是正确的,据我所知,eta 和部分 eta 不会改变。
  es<-function(condition,ss_effects,ss_error,df_ef,df_er,n) {
    ss_total<-ss_effects+ss_error
    ms_effects<-ss_effects/df_ef
    ms_error<-ss_error/df_er
    ms_total<-ms_effects+ms_error
    eta_squared<-ss_effects/ss_total
    partial_eta<-ss_effects/(ss_effects+ss_error)
    omega_squared<-(df_ef*(ms_effects-ms_error))/(ss_total+ms_error)
    partial_omega<-(df_ef*(ms_effects-ms_error))/(df_ef*ms_effects+(n-df_ef)*ms_error)
    cohens_f<-sqrt(eta_squared/(1-eta_squared))
    result<-data.frame(condition,ss_total,ms_effects,ms_error,ms_total,eta_squared,partial_eta,omega_squared,partial_omega,cohens_f)
    return(result)
  }
>   es(condition=result_repeated$condition,ss_effects=ss_effects,ss_error=ss_error,df_ef=df_ef,df_er=df_er,n=n)
    condition   ss_total   ms_effects  ms_error     ms_total eta_squared partial_eta omega_squared partial_omega    cohens_f
1 (Intercept) 56477.6604 55994.788226 2.4264934 55997.214719  0.99145021  0.99145021  0.9913646526  0.7807508983 10.76856192
2         IV1 31611.1552 15667.955258 0.6915697 15668.646827  0.99129280  0.99129280  0.9912273571  0.8748775914 10.66993196
3         IV2 29447.1128 14584.040310 0.7010859 14584.741396  0.99052429  0.99052429  0.9904530958  0.8652306377 10.22413944
4         IV3   298.3998     2.315401 0.7381130     3.053514  0.01551879  0.01551879  0.0105455609  0.0006591085  0.12555245
5     IV1:IV2   796.1730     3.083176 0.9847241     4.067900  0.01548998  0.01548998  0.0105296693  0.0013137071  0.12543402
6     IV1:IV3   698.4388     2.233520 0.8662120     3.099732  0.01279150  0.01279150  0.0078209534  0.0009734288  0.11382988
7     IV2:IV3   761.3055     1.129699 0.9507371     2.080436  0.00593559  0.00593559  0.0009391186  0.0001161811  0.07727245
8 IV1:IV2:IV3  1369.0296     3.530436 0.8422024     4.372638  0.02063029  0.02063029  0.0156991811  0.0039251608  0.14513741
>   es(condition=result_repeated$condition,ss_effects=ss_effects,ss_error=ss_error,df_ef=result_repeated$GG_df_ef,df_er=result_repeated$GG_df_er,n=n)
    condition   ss_total   ms_effects  ms_error     ms_total eta_squared partial_eta omega_squared partial_omega    cohens_f
1 (Intercept) 56477.6604           NA        NA           NA  0.99145021  0.99145021            NA            NA 10.76856192
2         IV1 31611.1552 15736.719217 0.6946049 15737.413822  0.99129280  0.99129280  0.9912272620  0.8743974241 10.66993196
3         IV2 29447.1128 14819.338300 0.7123972 14820.050698  0.99052429  0.99052429  0.9904527154  0.8633533962 10.22413944
4         IV3   298.3998     2.344612 0.7474250     3.092037  0.01551879  0.01551879  0.0105452327  0.0006509022  0.12555245
5     IV1:IV2   796.1730     3.204442 1.0234546     4.227896  0.01548998  0.01548998  0.0105291577  0.0012640554  0.12543402
6     IV1:IV3   698.4388     2.348475 0.9107944     3.259270  0.01279150  0.01279150  0.0078204548  0.0009258246  0.11382988
7     IV2:IV3   761.3055     1.276727 1.0744736     2.351201  0.00593559  0.00593559  0.0009389662  0.0001028031  0.07727245
8 IV1:IV2:IV3  1369.0296     3.978377 0.9490609     4.927438  0.02063029  0.02063029  0.0156979565  0.0034847513  0.14513741
>   es(condition=result_repeated$condition,ss_effects=ss_effects,ss_error=ss_error,df_ef=result_repeated$HF_df_ef,df_er=result_repeated$HF_df_er,n=n)
    condition   ss_total   ms_effects  ms_error     ms_total eta_squared partial_eta omega_squared partial_omega    cohens_f
1 (Intercept) 56477.6604           NA        NA           NA  0.99145021  0.99145021            NA            NA 10.76856192
2         IV1 31611.1552 15579.595929 0.6876696 15580.283599  0.99129280  0.99129280  0.9912274794  0.8754953645 10.66993196
3         IV2 29447.1128 14673.954723 0.7054083 14674.660131  0.99052429  0.99052429  0.9904529504  0.8645123245 10.22413944
4         IV3   298.3998     2.321489 0.7400537     3.061543  0.01551879  0.01551879  0.0105454925  0.0006573812  0.12555245
5     IV1:IV2   796.1730     3.134901 1.0012444     4.136146  0.01548998  0.01548998  0.0105294511  0.0012920592  0.12543402
6     IV1:IV3   698.4388     2.298103 0.8912590     3.189362  0.01279150  0.01279150  0.0078206733  0.0009460984  0.11382988
7     IV2:IV3   761.3055     1.251285 1.0530618     2.304347  0.00593559  0.00593559  0.0009389926  0.0001048931  0.07727245
8 IV1:IV2:IV3  1369.0296     3.822652 0.9119120     4.734564  0.02063029  0.02063029  0.0156983822  0.0036261961  0.14513741