我是 NLP 新手。我有一个包含 .txt 文件的文件夹,这些文件是合法的和特定的文件。我想根据四个预定义的标签来标记所有这些文件。我怎样才能自动做到这一点?
基于预定义实体的文本数据自动标注
数据挖掘
nlp
数据
标签
2022-02-26 23:19:12
1个回答
您的任务称为命名实体识别。来自维基:
命名实体识别 (NER)(也称为实体识别、实体分块和实体提取)是信息提取的子任务,旨在将非结构化文本中提及的命名实体定位和分类为预定义的类别,例如人名、组织,地点,医疗代码,时间表达,数量,货币价值,百分比等。
由于这是一项常见的 NLP 任务,因此有一些库可以开箱即用地进行 NER。spaCy就是一个这样的库,它可以使用 Python 执行 NER 以及许多其他 NLP 任务。
如果不先在自定义标签/实体上训练模型,您将无法执行 NER。你需要有一些标记的数据来训练,也许你已经有了这个,或者你可以手动标记它。SpaCy 希望您将数据标记为格式上每个实体的位置:
[("legal text here", {"entities": [(Start index, End index, "Money"),
(Start index, End index, "Judge"),
(Start index, End index, "Tribunal"),
(Start index, End index, "State")]}),
("legal text here", {"entities": [(Start index, End index, "Money"),
(Start index, End index, "Judge"),
(Start index, End index, "Tribunal"),
(Start index, End index, "State")]})
...]
有关如何为 NER 训练 spaCy 模型的示例(取自 docs):
from __future__ import unicode_literals, print_function
import plac
import random
from pathlib import Path
import spacy
from spacy.util import minibatch, compounding
# training data
TRAIN_DATA = Insert you labelled training data here
@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int),
)
def main(model=None, output_dir=None, n_iter=100):
"""Load the model, set up the pipeline and train the entity recognizer."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank("en") # create blank Language class
print("Created blank 'en' model")
# create the built-in pipeline components and add them to the pipeline
# nlp.create_pipe works for built-ins that are registered with spaCy
if "ner" not in nlp.pipe_names:
ner = nlp.create_pipe("ner")
nlp.add_pipe(ner, last=True)
# otherwise, get it so we can add labels
else:
ner = nlp.get_pipe("ner")
# add labels
for _, annotations in TRAIN_DATA:
for ent in annotations.get("entities"):
ner.add_label(ent[2])
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"]
with nlp.disable_pipes(*other_pipes): # only train NER
# reset and initialize the weights randomly – but only if we're
# training a new model
if model is None:
nlp.begin_training()
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(
texts, # batch of texts
annotations, # batch of annotations
drop=0.5, # dropout - make it harder to memorise data
losses=losses,
)
print("Losses", losses)
# test the trained model
for text, _ in TRAIN_DATA:
doc = nlp(text)
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
for text, _ in TRAIN_DATA:
doc = nlp2(text)
print("Entities", [(ent.text, ent.label_) for ent in doc.ents])
print("Tokens", [(t.text, t.ent_type_, t.ent_iob) for t in doc])
if __name__ == "__main__":
plac.call(main)
然后,当您拥有经过训练的模型时,您可以使用它来获取实体:
doc = nlp('put legal text to test your model here')
for ent in doc.ents:
print(ent.text, ent.start_char, ent.end_char, ent.label_)
其它你可能感兴趣的问题