我正在研究一个分类问题,我拥有的数据是时间采样数据(50 个样本/分钟)。
A1 A2 A3 A4 A5 A6 Time OUTPUT
0.1808 -1.9547 1.0487 -0.1018 -0.2402 -0.216 2018-03-22 10:53:27:009 Walk
0.1808 -1.9547 1.0487 -0.1018 -0.2402 -0.216 2018-03-22 10:53:27:029
0.1808 -1.9547 1.0487 0.0136 -0.2096 0.6761 2018-03-22 10:53:27:049
1.0641 -1.1054 -1.7732 0.0136 -0.2096 0.6761 2018-03-22 10:53:27:069
1.0641 -1.1054 -1.7732 0.0136 -0.2096 0.6761 2018-03-22 10:53:27:089
1.0641 -1.1054 -1.7732 0.0136 -0.2096 0.6761 2018-03-22 10:53:27:109
1.0641 -1.1054 -1.7732 0.0136 -0.2096 0.6761 2018-03-22 10:53:27:130
1.0641 -1.1054 -1.7732 0.0136 -0.2096 0.6761 2018-03-22 10:53:27:149
-0.1162 -1.462 -0.2147 -0.3992 -0.2146 0.4831 2018-03-22 10:53:27:169
-0.1162 -1.462 -0.2147 -0.3992 -0.2146 0.4831 2018-03-22 10:53:27:189
-0.1162 -1.462 -0.2147 -0.3992 -0.2146 0.4831 2018-03-22 10:53:27:209
-0.1162 -1.462 -0.2147 -0.3992 -0.2146 0.4831 2018-03-22 10:53:27:229
-0.1162 -1.462 -0.2147 -0.3992 -0.2146 0.4831 2018-03-22 10:53:27:249
-2.6265 -1.1069 1.0123 -0.4758 -0.1737 0.4346 2018-03-22 10:53:27:269
-2.6265 -1.1069 1.0123 -0.4758 -0.1737 0.4346 2018-03-22 10:53:27:289
-2.6265 -1.1069 1.0123 -0.4758 -0.1737 0.4346 2018-03-22 10:53:27:309
-2.6265 -1.1069 1.0123 -0.4758 -0.1737 0.4346 2018-03-22 10:53:27:329
-2.6265 -1.1069 1.0123 -0.4758 -0.1737 0.4346 2018-03-22 10:53:27:349
-1.7241 -1.0679 0.176 -0.4758 -0.1737 0.4346 2018-03-22 10:53:27:369
-1.7241 -1.0679 0.176 0.2784 -0.1321 0.9571 2018-03-22 10:53:27:389
-1.7241 -1.0679 0.176 0.2784 -0.1321 0.9571 2018-03-22 10:53:27:409
-1.7241 -1.0679 0.176 0.2784 -0.1321 0.9571 2018-03-22 10:53:27:429
-1.7241 -1.0679 0.176 0.2784 -0.1321 0.9571 2018-03-22 10:53:27:449
-5.888 -0.4203 -0.4726 0.2784 -0.1321 0.9571 2018-03-22 10:53:27:469
-5.888 -0.4203 -0.4726 0.4476 -0.2071 1.3086 2018-03-22 10:53:27:490
-5.888 -0.4203 -0.4726 0.4476 -0.2071 1.3086 2018-03-22 10:53:27:509
-5.888 -0.4203 -0.4726 0.4476 -0.2071 1.3086 2018-03-22 10:53:27:529
-5.888 -0.4203 -0.4726 0.4476 -0.2071 1.3086 2018-03-22 10:53:27:549
-1.3918 -1.7927 0.0591 0.4476 -0.2071 1.3086 2018-03-22 10:53:27:569
-1.3918 -1.7927 0.0591 0.4476 -0.2071 1.3086 2018-03-22 10:53:27:589
-1.3918 -1.7927 0.0591 0.6781 -0.4683 2.3528 2018-03-22 10:53:27:609
-1.3918 -1.7927 0.0591 0.6781 -0.4683 2.3528 2018-03-22 10:53:27:629
-1.3918 -1.7927 0.0591 0.6781 -0.4683 2.3528 2018-03-22 10:53:27:649
1.048 -2.1588 -1.3306 0.6781 -0.4683 2.3528 2018-03-22 10:53:27:669
1.048 -2.1588 -1.3306 0.6781 -0.4683 2.3528 2018-03-22 10:53:27:689
1.048 -2.1588 -1.3306 -1.0803 0.6924 -0.0053 2018-03-22 10:53:27:709
1.048 -2.1588 -1.3306 -1.0803 0.6924 -0.0053 2018-03-22 10:53:27:729
1.048 -2.1588 -1.3306 -1.0803 0.6924 -0.0053 2018-03-22 10:53:27:749
0.209 -0.2444 0.2241 -1.0803 0.6924 -0.0053 2018-03-22 10:53:27:769
0.209 -0.2444 0.2241 -1.0803 0.6924 -0.0053 2018-03-22 10:53:27:789
0.209 -0.2444 0.2241 -1.0803 0.6924 -0.0053 2018-03-22 10:53:27:809
0.209 -0.2444 0.2241 -0.8075 1.0533 -0.4522 2018-03-22 10:53:27:829
0.209 -0.2444 0.2241 -0.8075 1.0533 -0.4522 2018-03-22 10:53:27:849
-1.1067 0.5311 4.2524 -0.8075 1.0533 -0.4522 2018-03-22 10:53:27:869
-1.1067 0.5311 4.2524 -0.8075 1.0533 -0.4522 2018-03-22 10:53:27:889
-1.1067 0.5311 4.2524 -0.8075 1.0533 -0.4522 2018-03-22 10:53:27:909
-1.1067 0.5311 4.2524 -0.8075 1.0533 -0.4522 2018-03-22 10:53:27:929
-1.1067 0.5311 4.2524 0.3808 0.5637 -0.2897 2018-03-22 10:53:27:949
-1.3545 -0.0789 1.5372 0.3808 0.5637 -0.2897 2018-03-22 10:53:27:969
-1.3545 -0.0789 1.5372 0.3808 0.5637 -0.2897 2018-03-22 10:53:27:989
-1.3545 -0.0789 1.5372 0.3808 0.5637 -0.2897 2018-03-22 10:53:28:009 Run
-1.3545 -0.0789 1.5372 0.3808 0.5637 -0.2897 2018-03-22 10:53:28:029
-1.3545 -0.0789 1.5372 0.3808 0.5637 -0.2897 2018-03-22 10:53:28:049
2.1886 -3.0297 -0.0356 1.453 -0.7246 1.5865 2018-03-22 10:53:28:069
2.1886 -3.0297 -0.0356 1.453 -0.7246 1.5865 2018-03-22 10:53:28:089
2.1886 -3.0297 -0.0356 1.453 -0.7246 1.5865 2018-03-22 10:53:28:109
2.1886 -3.0297 -0.0356 1.453 -0.7246 1.5865 2018-03-22 10:53:28:129
2.1886 -3.0297 -0.0356 1.453 -0.7246 1.5865 2018-03-22 10:53:28:149
2.4449 -2.6882 1.2072 1.453 -0.7246 1.5865 2018-03-22 10:53:28:169
2.4449 -2.6882 1.2072 -0.8857 1.3342 -1.6148 2018-03-22 10:53:28:189
2.4449 -2.6882 1.2072 -0.8857 1.3342 -1.6148 2018-03-22 10:53:28:209
2.4449 -2.6882 1.2072 -0.8857 1.3342 -1.6148 2018-03-22 10:53:28:229
2.4449 -2.6882 1.2072 -0.8857 1.3342 -1.6148 2018-03-22 10:53:28:249
-1.3642 1.8139 1.3246 -0.8857 1.3342 -1.6148 2018-03-22 10:53:28:269
-1.3642 1.8139 1.3246 -0.3441 0.2811 -0.2783 2018-03-22 10:53:28:289
-1.3642 1.8139 1.3246 -0.3441 0.2811 -0.2783 2018-03-22 10:53:28:309
-1.3642 1.8139 1.3246 -0.3441 0.2811 -0.2783 2018-03-22 10:53:28:330
-1.3642 1.8139 1.3246 -0.3441 0.2811 -0.2783 2018-03-22 10:53:28:349
我需要为每组 50 个样本分类是步行还是跑步
关于如何处理这个问题或如何将这 50 个样本作为输入并将其映射到单个输出然后训练模型的任何想法/建议,或者我可以使用任何其他方式或可以处理此类的算法的问题?
提前致谢