我尝试过创建这样的管道,但出现错误
- AttributeError:“管道”对象没有“编译”属性
scaler = StandardScaler()
model = Sequential()
model.add(Dense(120, input_dim=46,activation='relu'))
model.add(Dropout(0.1, noise_shape=None, seed=None))
model.add(Dense(80, activation='relu'))
model.add(Dropout(0.1, noise_shape=None, seed=None))
model.add(Dense(40, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
pipeline = make_pipeline(scaler,model)
pipeline.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
pipeline.fit(X_train,y_train, epochs=50, batch_size=20, validation_data = (X_test,y_test))
# evaluate the model
scores = pipeline.evaluate(X_test,y_test)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))